Exercise 54

The number of bacteria after t hours in a controlled laboratory experiment is $n=f(t)$.
(a) What is the meaning of the derivative $f^{\prime}(5)$? What are its units?
(b) Suppose there is an unlimited amount of space and nutrients for the bacteria. Which do you think is larger, $f^{\prime}(5)$ or $f^{\prime}(10)$? If the supply of nutrients is limited, would that affect your conclusion? Explain.

Solution

(a) $f^{\prime}(5)$ is the rate that the bacteria population increases with respect to time after 5 hours have passed. It has units of bacteria per hour.
(b) If there's an unlimited amount of space and nutrients, then $f^{\prime}(10)>f^{\prime}(5)$ because there are more bacteria around to reproduce at $t=10$ than at $t=5$. If there's a limited amount of space and nutrients, then $f^{\prime}(10)<f^{\prime}(5)$ potentially because of hunger and overpopulation.

